

Current Sensor

Model Number:

HS3V 500 H00 HS3V 600 H00

HS3V 800 H00 HS3V 1000 H00

HS3V 1500 H00

HS3V 2000 H00

HS3V 2500 H00

HS3V 3000 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- ♦ Open loop current sensor using the Hall effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion losses
- ♦ Small size
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed
- Uninterruptible power supply (UPS)
- ♦ Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- Power supplies for welding applications
- ♦ Battery management
- ♦ Wind energy inverter

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Vc	V	± 15.75
Primary conductor temperature	<i>T</i> _B	$^{\circ}\! \mathbb{C}$	100
ESD rating, Human Body Model (HBM)	V _{ESD}	kV	4

X Stresses above these ratings may cause permanent damage.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}\!\mathbb{C}$	-40		85	
Ambient storge temperature	<i>T</i> _S	$^{\circ}\!\mathbb{C}$	-40		90	
Mass	m	g		500		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment	
Rms voltage for AC insulation test @ 50Hz,1min	V _d	kV	5	According to IEC 60664-1	
Impulse withstand voltage 1.2/50μs	١	kV	8.3	According to IEC 60664-1	
Clearance (pri sec.)	d c₁	mm	12.7		
Creepage distance (pri sec.)	d cp	mm	15.7		
Plastic case	-	-	UL94-V0		
Comparative traking index	СТІ	PLC	3		
Application example	-	1	600V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2	
Application example	-	-	1000V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2	

X Exposure to absolute maximum ratings for extended periods may degrade reliability.

Electrical data

 \aleph With T_A = 25 °C, V_C = ±15V, R_L = 10kΩ,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	Æп	А	-500		500	HS3V 500 H00
			-600		600	HS3V 600 H00
			-800		800	HS3V 800 H00
			-1000		1000	HS3V 1000 H00
Trimary nominarimo carrone			-1500		1500	HS3V 1500 H00
			-2000		2000	HS3V 2000 H00
			-2500		2500	HS3V 2500 H00
			-3000		3000	HS3V 3000 H00
		А	-1500		1500	HS3V 500 H00
			-1800		1800	HS3V 600 H00
Primary current, measuring range	/ em		-2400		2400	HS3V 800 H00
	7PM		-3000		3000	HS3V 1000 H00
			-4500		4500	HS3V 1500 H00
			-5500		5500	HS3V 20003000 H00
Supply voltage	V c	V		±15		@ 5%
Current consumption	k	mA		20		
Load resistance	R_{L}	kΩ	10			
Output voltage (Analog) @ /PN	Г о∪т	V	± 3.960	± 4.000	± 4.040	
Electrical offset voltage	V₀E	mV	-20		20	
Temperature coefficient of V _{OE}	<i>TCV</i> _{0E}	mV/K	-1		1	@ -40℃~85℃
	$G_{ m th}$	mV/A		8.00		HS3V 500 H00
				6.67		HS3V 600 H00
				5.00		HS3V 800 H00
Theoretical sensitivity				4.00		HS3V 1000 H00
,				2.67		HS3V 1500 H00
				2.00		HS3V 2000 H00
				1.60		HS3V 2500 H00
				1.33		HS3V 3000 H00
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-1.0		1.0	Exclusive of V_{0E}
Temperature of G	TCG	%/K	-0.1		0.1	@ -40℃~85℃
Linearity error 0/ _{PN}	£∟	% of In	-1.0		1.0	Exclusive of V _{OE}
Hysteresis offset voltage $@I_P = 0$ after $1 \times I_{PN}$	V ом	mV	-30		30	
Accuracy@ / PN	Χ	% of Æ _N	-1		1	Exclusive of V _{OE}
Response time @ 90% of I PN	t r	μs			5	
Frequency bandwidth(-3dB)	BW	kHz	25			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance

♦ Connection of secondary

♦ Primary hole

♦ Sensor

±0.5 mm

Molex 5045-04A

64mm×21mm

2 or 3pc Φ5.5 mm through-hole

2 or 3pc M5 metal screws

Recommended fastening torque 1.5 N•m (±10%)

Remarks

- ♦ V_{OUT} and I_P are in the same direction, when I_P flows in the direction of arrow.
- → Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.